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Abstract Hedgehogs are (possibly singular and self-intersecting) hypersurfaces that
describe Minkowski differences of convex bodies in R

n+1. They are the natural geo-
metrical objects when one seeks to extend parts of the Brunn–Minkowski theory to
a vector space which contains convex bodies. In terms of characteristic functions,
Minkowski addition of convex bodies correspond to convolution with respect to the
Euler characteristic. In this paper, we extend this relationship to hedgehogs with an
analytic support function. In this context, resorting only to the support functions and
the Euler characteristic, we give various expressions for the index of a point with
respect to a hedgehog.
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1 Introduction

Classical hedgehogs are (possibly singular and self-intersecting) hypersurfaces that
describe differences of convex bodies with C2 support functions in (n + 1)-Euclidean
vector space R

n+1. Given two such convex bodies K , L ⊂ R
n+1, the hedgehog

H : =K − L can be constructed (pointwise) by subtracting the boundary points of K
and L that correspond to a same outer unit normal: see Fig. 1, where K and L are the

plane convex bodies with respective support functions k (θ) :=
√

cos2 θ + 4 sin2 θ

and l (θ) :=
√

4 cos2 θ + sin2 θ, (θ ∈ [0, 2π ]).
Many notions from the theory of convex bodies carry over to hedgehogs and quite

a number of classical results find their counterparts. Of course, a few adaptations are
necessary. In particular, areas and volumes have to be replaced by their algebraic ver-
sions, which can take negative values. The (algebraic) (n + 1)-dimensional volume
of a hedgehog Hh ⊂ R

n+1 (with support function h) is defined as the integral over
R

n+1
�Hh of the Kronecker index, say ih (x), of x ∈ R

n+1
�Hh with respect to Hh :

ih (x) can be regarded as the algebraic intersection number of almost every oriented
half-line with origin x with the hypersurface Hh equipped with its transverse orienta-
tion (Langevin et al. 1988). This index is, in some sense, the corner stone of hedgehog
theory. In particular, it played a key role in obtaining a counter-example to an old
uniqueness conjecture of Alexandrov (1939), Martinez-Maure (2001). On the other
hand, there is a well-known relationship between Minkowski addition of convex bod-
ies and convolution with respect to the Euler characteristic (Groemer 1977; Schapira
1991; Viro 1988): If A and B are compact convex subsets of R

n+1, then

1A ∗ 1B = 1A+B,

where ∗ denotes the convolution product with respect to the Euler characteristic and
A+ B the usual Minkowski sum of A and B. After introducing appropriate definitions
in the framework of ‘analytic hedgehogs’ (i.e. hedgehogs with an analytic support
function), we can extend this relationship to hedgehogs and interpret the Kronecker
index in terms of the Euler characteristic:

Fig. 1 The Minkowski difference K − L (smooth case)
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Theorem (Theorem 2, Sect. 4) If H f and Hg are analytic hedgehogs of R
n+1 then

1 f ∗ 1g = 1 f +g ,

where 1h denotes the Euler index of Hh (see Sect. 4 for the definition) and ∗ the
convolution product with respect to Euler characteristic.

Theorem (Theorem 3, Sect. 4) Let Hh be an analytic hedgehog, which represents a
formal difference K − L of two convex bodies K , L ⊂ R

n+1 of class Cω+ (i.e., Cω and
with positive Gaussian curvature). Its Kronecker index ih is such that

ih (x) = (−1)n+1
(

1K ∗ 1− o
L

)
(x) for all x ∈ R

n+1
�Hh,

where 1A denotes the characteristic function over a subset A ⊂ R
n+1, ∗ the convolu-

tion product with respect to Euler characteristic and − o
L the reflection of

o
L through

the origin 0Rn+1 .

We then give new expressions for the Kronecker index resorting only to the support
functions and the Euler characteristic. In particular, we prove that:

Theorem (Corollary 5, Sect. 4) Let Hh be a hedgehog with support function h ∈
Cω (Sn; R). Its Kronecker index ih is such that

∀x ∈ R
n+1

�Hh, ih (x) =
{

1 − 1
2χh (x) i f n + 1 is even

1
2

(
χ+

h (x) − χ−
h (x)

)
i f n + 1 is odd,

where χh (x) := χ
[
(hx )

−1 ({0})], χ−
h (x) := χ

[
(hx )

−1 (]−∞, 0[)
]

and χ+
h (x) :=

χ
[
(hx )

−1 (]0,+∞[)
]
.

We shall also consider the case where x is a point of Hh (Theorems 6 and 7, Sect. 4).
It is important to recall here that the study of ih in the particular case n + 1 = 2 and
h ∈ C2

(
S

1; R
)

was the main ingredient in the resolution of the uniqueness conjecture
of Alexandrov (Martinez-Maure 2001).

In Martinez-Maure et al. (2003) and Martinez-Maure (2006), the author extended
hedgehog theory by regarding hedgehogs as Minkowski differences of arbitrary con-
vex bodies. The trick is to define hedgehogs inductively as collections of lower-
dimensional ‘support hedgehogs’. More precisely, the definition of general hedge-
hogs is based on the three following remarks. (i) In R, every convex body K is
determined by its support function hK as the segment [−hK (−1) , hK (1)], where
−hK (−1) ≤ hK (1), so that the difference K − L of two convex bodies K , L can be
defined as an oriented segment of R: K − L : = [− (hK − hL) (−1) , (hK − hL) (1)].
(i i) If K and L are two convex bodies of R

n+1 then for all u ∈ S
n , their support sets

with unit normal u, say Ku and Lu , can be identified with convex bodies Ku and Lu

of the n-dimensional Euclidean vector space u⊥ 	 R
n . (i i i) Addition of two convex

bodies K , L ⊂ R
n+1 corresponds to that of their support sets with same unit normal

vector: (K + L)u = Ku + Lu for all u ∈ S
n ; therefore, the difference K − L of two
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Fig. 2 The Minkowski difference K − L (polytopal case)

convex bodies K , L ⊂ R
n+1 must be define in such a way that (K − L)u = Ku − Lu

for all u ∈ S
n . A natural way of defining geometrically general hedgehogs as differ-

ences of arbitrary convex bodies is therefore to proceed by induction on the dimension
by extending the notion of support set with normal vector u to a notion of sup-
port hedgehog with normal vector u. In the polytopal case, hedgehogs are also known
under the name ‘virtual polytopes’. The notion of a virtual polytope was independently
introduced by several authors (see, e.g., McMullen 1989 or Pukhlikov and Khovanskii
1993). Let us give an example in R

2. Let K and L be the convex bodies of R
2 with

support function hK (x) = |〈x, e1〉| + |〈x, e2〉| and hL (x) = |〈x, e3〉| + |〈x, e4〉|,
where 〈., .〉 is the standard inner product on R

2, (e1, e2) the canonical basis of R
2 and

e3, e4 ∈ R
2 the unit vectors defined by e3 = 1√

2
(e1 + e2) and e4 = 1√

2
(e1 − e2).

These convex bodies are two squares whose formal difference K − L can be realized
geometrically as the hedgehog with support function h = hK − hL as represented on
Fig. 2.

The relevance of hedgehog theory can be illustrated by the following two principles
(Martinez-Maure 2010): 1. The study of convex bodies or hypersurfaces by splitting
them judiciously (that is, according to the problem under consideration) into a sum
of hedgehogs in order to reveal their structure (the study that led to the first coun-
terexample to A.D. Alexandrov’s uniqueness conjecture relied on this first principle);
2. The geometrization of analytical problems by considering real functions on the unit
sphere S

n of R
n+1 as support functions of hedgehogs or of more general hypersurfaces

(called ‘multi-hedgehogs’ Langevin et al. 1988; Martinez-Maure 2008, 2011).
Hedgehog (and multi-hedgehog) theory has, of course, many applications to the

Brunn–Minkowski theory. But, it also has applications to a wide variety of topics
including Sturm theory (Martinez-Maure 2008, 2011), Monge-Ampère equations
(Martinez-Maure 2012), minimal surfaces (Langevin et al. 1988; Martinez-Maure
2004; Rosenberg and Toubiana 1988), singularity theory (Langevin et al. 1988), the
group of sheaves on an algebraic variety (the Picard group) (Pukhlikov and Khovanskii
1993) and planar pseudo-triangulations (Panina 2006).

In this paper, we have chosen the framework of hedgehogs with analytic support
functions (we shall refer to them as ‘analytic hedgehogs’ or ‘Cω-hedgehogs’) even if
some of our results still hold with a few adaptations under weaker assumptions.

The paper is organized as follows. Section 2 recalls basic definitions and facts on
hedgehog theory. For the convenience of the reader, Sect. 3 briefly summarizes basic
notions and results from Euler’s integral calculus. Section 4 presents the main results,
Sect. 5 the proofs and Sect. 6 further remarks.
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2 Hedgehog theory

The set Kn+1 of all convex bodies of (n + 1)-Euclidean vector space R
n+1 is usually

equipped with Minkowski addition and multiplication by non-negative real numbers
which are respectively defined by:

(i) ∀(K , L) ∈ (Kn+1
)2

, K + L = {u + v |u ∈ K , v ∈ L }
(ii) ∀λ ∈ R+,∀K ∈ Kn+1, λ.K = {λu |u ∈ K } .

Of course,
(Kn+1,+, .

)
does not constitute a vector space since convex bodies cannot

be subtracted in Kn+1. Now, in the same way as we construct the group of integers
from the set of all natural numbers, we can construct the vector space

(Hn+1,+, .
)

of
formal differences of convex bodies of R

n+1 from
(Kn+1,+, .

)
.

Moreover, we can: 1. consider each formal difference of convex bodies of R
n+1 as

a (possibly singular and self-intersecting) hypersurface of R
n+1, called a hedgehog

(Martinez-Maure 2006, Section 2); 2. extend the mixed volume V : (Kn+1
)n+1 → R

to a symmetric (n + 1)-linear form on Hn+1 (Schneider 1993, p. 285, bottom).
Thus, hedgehog theory can be seen as an attempt to extend certain parts of

the Brunn–Minkowski theory to Hn+1. For n ≤ 2, it goes back to a paper by
Geppert (1937) who introduced hedgehogs under the German names stützbare Bere-
iche (n = 1) and stützbare Flächen (n = 2).

Let us recall the definition of hedgehogs with C2 support functions in R
n+1. For

details on convex bodies, we refer the reader to the book by Schneider (1993). As
is well-known, every convex body K ⊂ R

n+1 is determined by its support function
hK : S

n −→R, where hK (u) is defined by hK (u) = sup {〈x, u〉 |x ∈ K }, (u ∈ S
n),

that is, as the signed distance from the origin to the support hyperplane with unit
normal vector u. In particular, every closed convex hypersurface of class C2+ (i.e., C2-
hypersurface with positive Gaussian curvature) is determined by its support function
h [which must be of class C2 on S

n (Schneider 1993, p. 111)] as the envelope Hh of
the family of hyperplanes with equation 〈x, u〉 = h(u). This envelope Hh is described
analytically by the following system of equations

{ 〈x, u〉 = h(u)

〈x, . 〉 = dhu(.).

The second equation is obtained from the first by performing a partial differentiation
with respect to u. From the first equation, the orthogonal projection of x onto the
line spanned by u is h (u) u and from the second one, the orthogonal projection of x
onto u⊥ is the gradient of h at u (cf. Fig. 3, where Hh ⊂ R

2 has support function
h (θ) := 10 + cos (3θ))). Therefore, for each u ∈ S

n , xh (u) = h(u)u + (∇h) (u) is
the unique solution of this system.

Now, for any C2 function h on S
n , the envelope Hh is in fact well-defined (even

if h is not the support function of a convex hypersurface). Its natural parametrization
xh : S

n → Hh, u �→ h(u)u + (∇h) (u) can be interpreted as the inverse of its Gauss
map, in the sense that: at each regular point xh (u) of Hh , u is a normal vector to Hh .
We say that Hh is the hedgehog (or C2-hedgehog) with support function h (cf. Fig. 4,
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Fig. 3 Convex bodies of class C2+ as envelopes parametrized by their Gauss map

Fig. 4 A C2 -hedgehog

where Hh ⊂ R
2 has support function h (θ) := cos (2θ)). Note that xh depends linearly

on h.
Since the parametrization xh can be regarded as the inverse of the Gauss map of

Hh , the Gaussian curvature κh of Hh at xh (u) is given by κh(u) = 1/ det [Tu xh],
where Tu xh is the tangent map of xh at u. Therefore, singularities are the very points
at which the Gaussian curvature is infinite. For every u ∈ S

n , the tangent map of xh at
the point u is Tu xh = h(u) I dTuSn + Hu

h , where Hu
h is the symmetric endomorphism

associated with the hessian of h at u (Langevin et al. 1988). Thus, the so-called
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‘curvature function’ Rh := 1/κh is well-defined and continuous all over the unit
sphere, including at the singular points (so that the classical Minkowski problem
arises naturally for hedgehogs (Martinez-Maure 2010, 2012).

Given a hedgehog Hh ⊂ R
n+1, (n ≥ 1), the Kronecker index of x ∈ R

n+1
�Hh

with respect to Hh , say ih (x), can be defined as the degree of the map

U(h,x) : S
n → S

n, u �−→ xh(u) − x

‖xh(u) − x‖ ,

and interpreted as the algebraic intersection number of an oriented half-line with
origin x with the hypersurface Hh equipped with its transverse orientation (number
independent of the oriented half-line for an open dense set of directions) (Langevin
et al. 1988). For n + 1 = 2, the Kronecker index ih (x) is nothing but the winding
number of Hh around x : it counts the total number of times that Hh winds around x .
For instance, the index is equal to −1 at any interior point of the hedgehog represented
on Fig. 4, since the curve winds once clockwise around the point. The (algebraic
(n + 1) -dimensional) volume of a hedgehog Hh ⊂ R

n+1 can be defined by

vn+1 (h) :=
∫

Rn+1�Hh

ih (x) dλ (x) ,

where λ denotes the Lebesgue measure on R
n+1 , and it satisfies

vn+1 (h) = 1

n + 1

∫

Sn

h(u)Rh(u)dσ(u),

where Rh is the curvature function and σ the spherical Lebesgue measure on S
n . For

instance, in the example of Fig. 4, the algebraic area (or 2-dimensional volume) of
Hh ⊂ R

2 is equal to minus the area of the interior of the curve. As for convex bodies
of class C2+, we introduce a mixed curvature function R( f1,..., fn) and define the mixed
(algebraic (n + 1)-dimensional) volume of n + 1 hedgehogs Hh1, . . . ,Hhn+1 of R

n+1

by

vn+1(h1, . . . , hn+1) = 1

n + 1

∫

Sn

h1(p)R(h2,..., hn+1)(p)dσ(p),

where R(h2,...,hn+1) denotes the mixed curvature function ofHh2 , . . . ,Hhn+1 (Martinez-
Maure 2001). See Martinez-Maure (1999) for a study of this extension of the mixed
volume and Alexandrov-Fenchel type inequalities for hedgehogs.

3 Euler calculus

Euler calculus is an integration theory built with the Euler characteristic χ as a finitely
additive measure. Born in the sheaf theory, it has applications to algebraic topology,
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to stratified Morse theory, for reconstructing objects in integral geometry and for
enumeration problems in computational geometry and sensor networks (Curry et al.
2012). The short survey papers by Schapira (1991) and Viro (1988) played an important
role in the development of this theory.

For the convenience of the reader, we briefly summarize in this section very basic
notions and results from Euler calculus. For proofs and more information on Euler
calculus and its applications, we refer the reader to Curry et al. (2012).

Tame sets. In Euler calculus, the measurable sets are the tame sets in some fixed
0-minimal structure. We shall not recall here the definition of tame subsets in a fixed
0-minimal structure. It can be found in the classical surveys on Euler calculus, e.g., in
van den Dries (1998). Classical examples include polyconvex sets, semialgebraic sets
and subanalytic sets. Here, we shall only need to know some basic facts that we shall
summarize below. In particular, we shall need to know that the union and intersection
of two tame sets are again tame.

Euler characteristic. Fix an 0-minimal structure O on a topological space X . Defin-
able functions between two spaces are those whose graphs are in O. The Euler char-
acteristic χ : O → Z admits the following combinatorial definition:

Any tame set A ∈ O is definably homeomorphic to a finite disjoint union of open
simplices

∐
i σi and we set:

χ (A) =
∑

i

(−1)dim(σi ) .

Algebraic topology asserts that this quantity is well-defined, that is, independent
of the decomposition into open simplices. This combinatorial Euler characteristic is a
topological invariant. It is also a homotopy invariant for compact finite cell complexes
(but not for non-compact spaces).

Examples 1. Euler characteristic can be regarded as a generalization of cardinality.
For a finite discrete tame set A, χ (A) is the cardinality of A:

χ (A) = # A;

2. A closed orientable 2-manifold S has Euler characteristic 2−2g, where g denotes
the genus of S;

3. If A is a compact contractible tame set, then χ (A) = 1;
4. Any open n-ball of R

n has Euler characteristic (−1)n ;
5. The n-dimensional sphere S

n has Euler characteristic 1 + (−1)n ;
6. The Euler characteristic of any odd-dimensional compact manifold is equal to zero

[see MacLaurin and Robertson (2003) for an elementary proof].

Remarks 1. Euler calculus relies on the following additivity property:

Proposition For any pair {A, B} of tame subsets of X, we have:

χ (A ∪ B) = χ (A) + χ (B) − χ (A ∩ B) .
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2. Euler characteristic is multiplicative under cross products:

Proposition For any pair {E, F} of tame sets, we have:

χ (E × F) = χ (E) .χ (F) .

Note that these additivity and multiplicativity properties generalize the ones of
cardinality of sets.

Euler integral. The above additivity property suggests to define a measure over tame
sets via:

∫

X

1A (x) dχ = χ (A)

where 1A is the characteristic function over a tame subset A of X . A function f : X →
Z is said to be constructible if it has finite range and if all its level sets f −1 ({s}) are tame
subsets of X . Let C F (X) denote the Z-module of all Z-valued constructible functions
on X . The Euler integral is defined to be the homomorphism

∫
X : C F (X) → Z given

by:

∫

X

f dχ :=
+∞∑

s=−∞
sχ
[

f −1 ({s})
]
.

Alternately, writing f ∈ C F (X) as f =∑i ci 1σi , where X = ∐i σi is a decom-
position of X into a finite disjoint union of open cells and where ci ∈ Z, we have:

∫

X

f dχ :=
∑

i

ciχ (σi ) =
∑

i

ci (−1)dim(σi ) .

Convolution. On a finite-dimensional real vector space V , a convolution operator with
respect to Euler characteristic is defined as follows:

∀ ( f, g) ∈ C F (V )2 , ( f ∗ g) (x) =
∫

V

f (y) g (x − y) dy.

Convolution is a commutative, associative operator providing C F (V ) with the
structure of an algebra.

Proposition (C F (V ) ,+, ∗) is a commutative ring with multiplicative identity ele-
ment 1{0V}.

Relationship with Minkowski addition. There is a close relationship between
Minkowski addition and convolution with respect to the Euler characteristic (Groemer
1977; Schapira 1991; Viro 1988):
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Groemer’s theorem (Groemer 1977) Let A and B be two compact convex subsets of
R

n+1. We have

1A ∗ 1B = 1A+B,

where ∗ denotes the convolution product with respect to the Euler characteristic and
A + B the usual Minkowski sum of A and B.

This relationship will be the starting point in our study.

4 Statement of main results

In this section, given a convex body K ⊂ R
n+1, we shall often need

o
K and ∂K to

be tame subsets of R
n+1. It is the reason why we shall restrict ourselves to analytic

hedgehogs (resp. convex bodies).

4.1 Minkowski inversion with respect to χ

Since 1{0
Rn+1

} is the multiplicative identity of
(
C F

(
R

n+1
)
,+, ∗) , the following

result can be regarded as a Minkowski inversion theorem:

Theorem 1 Let K ⊂ R
n+1 be a convex body of class Cω+. We have

(−1)n+1
(

1K ∗ 1− o
K

)
= 1{0

Rn+1
},

where − o
K denotes the reflection of

o
K through the origin 0Rn+1 . In other words, the

convolution inverse of the characteristic function of K is given by:

(1K )−1 = (−1)n+1 1− o
K
.

Remarks 1. Of course, if K is a convex body reduced to a point a of R
n+1, then the

convolution inverse of the characteristic function of K is given by:

(1K )−1 = 1{−a}.

2. In Pukhlikov and Khovanskii (1993), gave a similar Minkowski inversion theorem
in the polytopal case: for every convex polytope K ⊂ R

n+1, we have

(−1)dim K (1K ∗ 1−relint K ) = 1{0
Rn+1

},

where relint K is the relative interior of K , that is, the interior of K in the smallest
affine subspace that contains K .
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Euler index

Definition Let Hh be a Cω -hedgehog of R
n+1 and let K , L ⊂ R

n+1 be convex
bodies of class Cω+ such that Hh is representing the formal difference K − L . Define
the Euler index of Hh by

1h := 1K ∗ (1L)−1 = (−1)n+1
(

1K ∗ 1− o
L

)
,

where − o
L denotes the reflection of

o
L through the origin 0Rn+1 .

Remarks 1. Given any Cω-hedgehog Hh ⊂ R
n+1, for every large enough r > 0,

k := h + r and l := r are the respective support functions of two convex bodies K
and L such that Hh is representing the formal difference K − L . Indeed, h = k − l
and if r is large enough then, for all u ∈ S

n , the principal radii of curvature of Hk

at xk (u), which are the eigenvalues of the tangent map Tu xk = Tu xh + r I dTuSn ,
are all positive.

2. Using Groemer’s theorem (see above) and the fact that the convolution product ∗
is commutative, associative and admits 1{0

Rn+1
} as unity, it is easy to check that

1h is independent of the choice of the pair (K , L) of convex bodies of class Cω+
such that Hh is representing K − L .

Furthermore, Groemer’s theorem admits the following extension to analytic hedge-
hogs:

Theorem 2 Let H f and Hg be two analytic hedgehogs of R
n+1. We have

1 f ∗ 1g = 1 f +g .

This can be easily deduced from Groemer’s theorem by using the above Minkowski
inversion theorem. We will leave it to the reader to write down the details.

4.2 Relationship with Kronecker index

Theorem 3 Let Hh be a Cω-hedgehog of R
n+1 and let K , L ⊂ R

n+1 be convex
bodies of class Cω+ such that Hh is representing the formal difference K − L.

For any x ∈ R
n+1

�Hh, the Euler index 1h (x) := (−1)n+1
(

1K ∗ 1− o
L

)
(x) of Hh

at x is equal to ih (x), that is, to the degree of the map

U(h,x) : S
n → S

n, u �−→ xh(u) − x

‖xh(u) − x‖ .

In other words, the Kronecker index ih is nothing but the restriction of the Euler
index to R

n+1
�Hh.
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4.3 Expressions for the Kronecker index

Theorem 4 Let Hh ⊂ R
n+1 be a Cω-hedgehog. Fix x ∈ R

n+1
�Hh and let hx :

S
n → R be the support function of Hh with respect to x:

hx (u) := 〈xh(u) − x, u〉 = h (u) − 〈x, u〉 .

The Kronecker index ih (x) is given by

ih (x) = 1 + (−1)n+1 χ−
h (x) = χ+

h (x) + (−1)n+1 ,

where χ−
h (x) := χ

[
(hx )

−1 (]−∞, 0[)
]

and χ+
h (x) := χ

[
(hx )

−1 (]0,+∞[)
]
.

Corollary 5 Under the assumptions of the previous theorem, we have:

∀x ∈ R
n+1

�Hh, ih (x) =
{

1 − 1
2χh (x) if n + 1 is even

1
2

(
χ+

h (x) − χ−
h (x)

)
if n + 1 is odd,

where χh (x) := χ
[
(hx )

−1 ({0})], χ−
h (x) := χ

[
(hx )

−1 (]−∞, 0[)
]

and χ+
h (x) :=

χ
[
(hx )

−1 (]0,+∞[)
]
.

Remarks 1. From these results, if n + 1 is even then, for any x ∈ R
n+1

�Hh , the
knowledge of one of the four integers χh (x), χ−

h (x), χ+
h (x) and ih (x) implies

that of the three others.
2. For n + 1 = 2, we proved the following more general result (recall that the Euler

characteristic is a generalization of cardinality):

Theorem (Martinez-Maure 2000) Let Hh ⊂ R
2 be a C2-hedgehog. For every x ∈

R
2
�Hh, the Kronecker index ih (x) is given by

ih (x) = 1 − 1

2
nh (x) ,

where nh (x) denotes the number of cooriented support lines of Hh through x , that
is, the number of zeros of hx : S

1 → R, u �→ h(u) − 〈x, u〉.
Figure 5 illustrates this result considering again the example of Fig. 4 (that is, the

hedgehog Hh with support function h (θ) := cos (2θ)).
3. For n + 1 = 3, another expression for ih (x) is given by:

Theorem (Martinez-Maure 2010) Let Hh ⊂ R
3 be a C2- hedgehog. For every x ∈

R
3
�Hh , the Kronecker index ih (x) is given by

ih (x) = r+
h (x) − r−

h (x) ,

where r−
h (x) (resp. r+

h (x)
)

denotes the number of connected components of S
2 −

h−1
x ({0}) on which hx (u) := h(u) − 〈x, u〉 is negative (resp. positive ).
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Fig. 5 Example where
nh (x) = 4 and thus ih (x) = −1

4.4 Euler index at a point of Hh ⊂ R
2

Theorem 6 Let Hh ⊂ R
2 be a Cω -hedgehog. At a simple regular point x := xh (u)

of Hh, the Euler index 1h (x) is equal to the value taken by the Kronecker index ih

on the connected component of R
2
�Hh towards which the unit normal vector −u is

pointing to. At a simple cusp point c of Hh, the Euler index 1h (c) is equal to the value
taken by the Kronecker index ih on the connected component of R

2
�Hh that lies, in

a neighborhood 
 of c, on the same side of Hh as the evolute of Hh ∩ 
.

Remarks 1. Generic singularities of plane C∞-hedgehogs are cusp points (Langevin
et al. 1988).

2. This result can be extended to hedgehogs Hh ⊂ R
2 that are Minkowski differences

K − L of convex polygons. For instance, if we start again with the example of
the difference Hh = K − L of two squares presented in Fig. 2, the Euler index of

Hh is such that
(

1K ∗ 1− o
L

)
= 1h . Figure 6 is describing this relation by means

of representations in R
2. As can be seen on this figure, where the red arrows are

representing unit normal vectors u, at a simple non-angular point x of Hh , the
Euler index 1h (x) is equal to the value taken by the Kronecker index ih on the
connected component of R

2
�Hh towards which the normal vector −u is pointing

to. The blue arrows just indicate the orientation of Hh .

4.5 Euler index at a regular point of Hh ⊂R
n+1

In higher dimensions, the question is more involved at the singular points. However,
the result remains true at the simple regular points.

Theorem 7 Let Hh ⊂R
n+1 be a Cω- hedgehog. At a simple regular point x := xh (u)

of Hh, the Euler index 1h (x) is equal to the value taken by the Kronecker index ih on
the connected component of R

n+1
�Hh towards which the unit normal vector −u is

pointing to.
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Fig. 6 Euler index of the Minkowski difference of two squares

5 Proof of the results

Proof of Theorem 1 By the definition of the convolution product, we have

(
1K ∗ 1− o

K

)
(x) :=

∫

Rn+1

1K (y) 1− o
K

(x − y) dχ (y) for x ∈ R
n+1.

Fix x ∈ R
n+1. The range of Fx : R

n+1 → R, y �−→ 1K (y) 1− o
K

(x − y) is

included in {0, 1} and

∀y ∈ R
n+1, Fx (y) = 1 ⇔ y ∈ K ∩

(
o
K + {x}

)
.

By the definition of Euler integral, we thus get

(
1K ∗ 1− o

K

)
(x) :=

∫

Rn+1

Fx (y) dχ (y) = χ

[
K ∩

(
o
K + {x}

)]
.

If x = 0Rn+1 then K ∩
(

o
K + {x}

)
= o

K and hence
(

1K ∗ 1− o
K

)
(x) = (−1)n+1

since
o
K is homeomorphic to an open (n + 1)-ball.

Assume x �= 0Rn+1 . If K ∩
(

o
K + {x}

)
= ∅ then χ

[
K ∩

(
o
K + {x}

)]
= 0.

Hence, we may assume that K ∩
(

o
K + {x}

)
�= ∅. In this case,

o
K ∩

(
o
K + {x}

)

is homeomorphic to an open (n + 1)-ball and its boundary is the disjoint union of

∂K ∩
(

o
K + {x}

)
and K ∩ ∂ (K + {x}), where the boundary of a convex body L is

denoted by ∂L . Therefore, K ∩
(

o
K + {x}

)
is then the disjoint union of

o
K ∩
(

o
K + {x}

)

and ∂K ∩
(

o
K + {x}

)
, which is homeomorphic to an open n-ball, so that
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χ

[
K ∩

(
o
K + {x}

)]
= χ

[
o
K ∩

(
o
K + {x}

)]
+ χ

[
∂K ∩

(
o
K + {x}

)]

= (−1)n+1 + (−1)n

= 0,

which achieves the proof. ��
To prove Theorems 3 and 4, we shall need some intermediate results and properties.

Proposition 8 Under assumptions of Theorem 3, we have:

1h (x) =
⎧
⎨

⎩

ih (x) = 0 if x /∈ K + (−L)

(−1)n+1 (1 − χ [(K + {−x}) ∩ ∂L]) if x ∈ (K + (−L)) �Hh .

Proof We have

1K ∗ 1− o
L

= 1K ∗ (1−L − 1−∂L) = (1K ∗ 1−L) − (1K ∗ 1−∂L) ,

where −L (resp. −∂L) denotes the reflection of L (resp. ∂L) through the origin. Now,
we have 1K ∗ 1−L = 1K+(−L) by Groemer’s theorem, so that

1K ∗ 1− o
L

= 1K+(−L) − (1K ∗ 1−∂L) .

Let x ∈ R
n+1. The range of Fx : R

n+1 → R, y �−→ 1K (y) 1−∂L (x − y) is included
in {0, 1} and

∀y ∈ R
n+1, Fx (y) = 1 ⇔ y ∈ K ∩ (∂L + {x}) .

By the definition of Euler integral, we thus get

(1K ∗ 1−∂L) (x) :=
∫

Rn+1

Fx (y) dχ (y) = χ [K ∩ (∂L + {x})] .

Using the translation y �→ y − x , we deduce that

(1K ∗ 1−∂L) (x) = χ [(K + {−x}) ∩ ∂L] .

First assume x /∈ K + (−L). Then 1K+(−L) (x) = 0 and (1K ∗ 1−∂L) (x) = 0
since (K + {−x}) ∩ ∂L �= ∅ would imply x ∈ K + (−∂L). Consequently

1h (x) := (−1)n+1
(

1K ∗ 1− o
L

)
(x)

= (−1)n+1 (1K+(−L) (x) − (1K ∗ 1−∂L) (x)
)

= 0.
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Since xh (Sn) ⊂ K + (−L), we also have ih (x) = 0 and thus 1h (x) = ih (x).
Now assume x ∈ (K + (−L)) �Hh . Then we get

1h (x) = (−1)n+1 (1 − χ [(K + {−x}) ∩ ∂L]) .

��
Recall that we say that two submanifolds S1 and S2 of a manifold M are transverse,

and we write S1 � S2, if Tm M = Tm S1 + Tm S2 for all m ∈ S1 ∩ S2.

Proposition 9 Let Hh be a Cω-hedgehog of R
n+1 and let K ,L ⊂ R

n+1 be convex
bodies of class Cω+ such that Hh is representing the formal difference K − L. For every
x ∈ R

n+1 such that (K + {−x}) ∩ L �= ∅ and ∂ (K + {−x}) � ∂L, the following
properties hold:

(i) (hx )
−1 ({0}) ≈ ∂ (K + {−x}) ∩ ∂L;

(ii) (hx )
−1 (] − ∞, 0]) ≈ ∂ (K + {−x}) ∩ L;

(iii) (hx )
−1([0,+∞[) ≈ (k + {−x}) ∩ ∂L;

where ≈ is the homeomorphism relation and (hx ) (u) := h (u) − 〈x, u〉, (u ∈ S
n).

Proof (i) It follows from the assumptions that (K + {−x}) ∩ L is a strictly convex
body with interior points, and thus that its support function

f : S
n −→R

u �→ sup {〈p, u〉 |p ∈ (K + {−x}) ∩ L }

is continuously differentiable (see, e.g., Schneider 1993, p. 107). Denote by k and l
the respective support functions of K and L and let kx (u) := k (u) − 〈x, u〉 for all
u ∈ S

n . Note that the zeros of hx = kx − l are the points u ∈ S
n such that the support

hyperplanes with exterior normal vector u of K + {−x} and L coincide. Such an
u ∈ (hx )

−1 ({0}) cannot be a regular point of x f . So, we can consider the continuous
map

φ : (hx )
−1 ({0}) → ∂ (K + {−x}) ∩ ∂L

u �−→ x f (u) := (∇ f ) (u) + f (u) u

To check that it defines a homeomorphism from the compact (hx )
−1 ({0}) to

∂ (K + {−x}) ∩ ∂L , it suffices to prove that it is a bijection.
Let p ∈ ∂ (K + {−x}) ∩ ∂L . Since ∂ (K + {−x}) � ∂L , there exists a pair of

non-antipodal points v and w on S
n , such that

p = xkx (v) = xl (w) .

Let γ denote the shortest arc between v and w on S
n . Since we have clearly hx (v) < 0

and hx (w) > 0, there exists some u ∈ γ such that hx (u) = 0. It remains to prove
that such an u ∈ γ is unique and such that φ (u) = p. For ξ ∈ S

n , let Hkx (ξ)

and Hl (ξ) (resp. H−
kx

(ξ) and H−
l (ξ)

)
denote the respective support hyperplanes

(resp. halfspaces) with exterior normal vector ξ of K + {−x} and L . Note that: (α)

The segment with endpoints xkx (u) and xl (u), say σ (u), is passing through the
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Fig. 7 Projection view onto the plane (Rv + Rw)⊥

complementary of H−
kx

(v) ∪ H−
l (w); (β) Hkx (u) = Hl (u) = (

xkx (u) xl (u)
) +

(
v⊥ ∩ w⊥), where ξ⊥ is the vector subspace orthogonal to ξ ∈ S

n and
(
xkx (u) xl (u)

)

the line through xkx (u) and xl (u).
Let u1, u2 ∈ γ ∩ (hx )

−1 ({0}). From (α) and (β) with u = u1 and u = u2, it
follows that the support hyperplanes Hkx (u1) = Hl (u1) and Hkx (u2) = Hl (u2) of
the convex hull of (K + {−x})∪ L must coincide (in order that all the endpoints of the
segments σ (u1) and σ (u2) lie in each of the support halfspaces H−

l (u1) and H−
l (u2),

see Fig. 7). Therefore, there exists a unique u ∈ γ such that hx (u) = 0 and it satisfies
φ (u) = p. (i) To complete the proof it is sufficient to observe that any crossing
of (hx )

−1 ({0}) on S
n from (hx )

−1 (]−∞, 0]) to (hx )
−1 ([0,+∞[) corresponds to a

crossing of ∂ (K + {−x})∩∂L on ∂ (K + {−x}) (resp. ∂L) from ∂ (K + {−x})∩ 0
L to

∂ (K + {−x}) ∩ (Rn+1\L
)

(resp from.
(
R

n+1\ (K + {−x})) ∩∂L to

(
0
K + {−x}

)
∩

∂L , which results from the proof of (i). ��
The following corollary is immediate

Corollary 10 Under the assumptions of the previous proposition, we have:

⎧
⎨

⎩

χ [∂ (K + {−x}) ∩ ∂L] = χh (x)

χ [∂ (K + {−x}) ∩ L] = χ−
h (x) + χh (x)

χ [(K + {−x}) ∩ ∂L] = χh (x) + χ+
h (x)

where χh (x) := χ
[
(hx )

−1 ({0})], χ−
h (x) := χ

[
(hx )

−1 (]−∞, 0[)
]

and χ+
h (x) :=

χ
[
(hx )

−1 (]0,+∞[)
]
.
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Lemma 11 Let Hh be a Cω-hedgehog of R
n+1 and let K , L ⊂ R

n+1 be convex
bodies of class Cω+ such that Hh is representing the formal difference K − L. For any
x ∈ R

n+1\Hh, we have:

1h (x) = ih (x) = 1 − (−1)n χ−
h (x) = 0

if ∂ (K + {−x}) and ∂L are externally tangent (that is, if they intersect in exactly one
point and the intersection of their interior is empty).

Proof Let a = b − x be the point of tangency of ∂ (K + {−x}) and ∂L , where
(a, b) ∈ K × L . By Proposition 8, we have

1h (x) = (−1)n+1 (1 − χ [(K + {−x}) ∩ ∂L]) .

Since (K + {−x}) ∩ ∂L = {a}, this implies 1h (x) = 0.
Let u be the point of S

n such that a = xkx (u) = xl (−u). For all ε > 0, xε := x +εu
is such that (K + {−xε}) ∩ L = ∅ and hence xε /∈ K + (−L). Therefore, ih (xε) = 0
for all ε > 0 and hence ih (x) = 0.

Finally, by noticing that χ−
h (x) is constant on each connected component of

R
n+1 − Hh and that (hx )

−1 (]−∞, 0[) is homeomorphic to an open n-ball Bn when
the Euclidean norm of x is sufficiently large, we see that

χ−
h (x) = χ (Bn) = (−1)n ,

which achieves the proof ��
Lemma 12 Let Hh ⊂ R

n+1 be an analytic hedgehog. For every x ∈ R
n+1

�Hh, the
index 1h (x) is given by

1h (x) = 1 + (−1)n+1 χ−
h (x) ,

where χ−
h (x) := χ

[
(hx )

−1 (]−∞, 0[)
]
.

Proof From Proposition 8 and Lemma 11, we can assume without loss of generality
that x ∈ (K + (−L)) �Hh and ∂ (K + {−x}) � ∂L . Then, by Proposition 8 and
Corollary 10, we have:

1h (x) = (−1)n+1 (1 − (χh (x) + χ+
h (x)

))
.

But

χ−
h (x) + χh (x) + χ+

h (x) = χ
(
S

n) and χ
(
S

n) = 1 + (−1)n ,

so that

1h (x) = 1 + (−1)n+1 χ−
h (x) .

��
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Proof of Theorems 3 and 4. Let Hh̃ ⊂ R
n+1 be the hedgehog with support function

h̃ (−u) = −h (u), (u ∈ S
n). Note that Hh and Hh̃ have:

– the same geometric realization since xh̃ (−u) = xh (u) for all u ∈ S
n ;

– the same transverse orientation (resp. opposite transverse orientations) at each
point xh̃ (−u) = xh (u) if n + 1 is even (resp. odd).

Therefore ih̃ = (−1)n+1 ih on R
n+1

�Hh . Thus if we prove that, under assumptions
of Theorem 3, ih (x) = χ+

h (x) + (−1)n+1 for all x ∈ R
n+1

�Hh , then

ih (x) = (−1)n+1 ih̃ (x)

= (−1)n+1
(
χ+

h̃
(x) + (−1)n+1

)

= 1 + (−1)n+1 χ+
h̃

(x)

= 1 + (−1)n+1 χ−
h (x) for all x ∈ R

n+1
�Hh,

and hence ih = 1h on R
n+1

�Hh by Lemma 12. So it remains only to prove that:

∀x ∈ R
n+1

�Hh, ih (x) = χ+
h (x) + (−1)n+1 .

Since ih (x) is equal to 0 and (hx )
−1 (]0,+∞[) homeomorphic to an open n-ball when

the distance of x from the origin is sufficiently large, it suffices to prove that the map
x �→ ih (x) − (χ+

h (x) + (−1)n+1) is constant on R
n+1 − Hh . Since the maps x �→

ih (x) and x �→ χ+
h (x) are constant on each connected component of R

n+1 − Hh ,
we only need to prove that ih (x) − χ+

h (x) remains constant whenever x crosses Hh

transversally at a regular point.
Recall that, at a regular point xh (u) of Hh , the transverse orientation of Hh is given

by sign [Rh (u)] u, where sign is the sign function and Rh the curvature function of
Hh . Therefore, the Kronecker index ih (x) decreases by one unit whenever x crosses
Hh transversally at a simple regular point xh (u) in the direction of sign [Rh (u)] u.
Thus it is sufficient to prove that χ+

h (x) also decreases by one unit whenever x crosses
Hh transversally at a simple regular point xh (u) in the direction of sign [Rh (u)] u.

Let xh (u) be a simple regular point of Hh . As the point xh (u) is regular, the
curvature function of Hh is nonzero at u: Rh (u) �= 0. Recall that Rh (u) is the product
of the principal radii of curvature R1

h (u), …, Rn
h (u) of Hh at u, which are defined

as the eigenvalues of xh at u. Denote by p (resp. q) the number of principal radii of
curvature of Hh at u that are positive (resp. negative),

(
(p, q) ∈ N

2 and p + q = n
)
.

Let us consider the variation of χ+
h (x) when x , moving on the normal line to Hh

at xh (u), crosses Hh at xh (u) in the direction of transverse orientation (that is, in the
direction of (−1)q u ). We first consider the case where the sectional curvature σxh(u)

of Hh at xh (u) is positive (i.e., (p, q) = (n, 0) or (0, n)). In the sequel of the proof,
Bn will denote an open n-ball. If q = 0, then the effect of the crossing on χ+

h (x) is to
add χ (Bn)−χ (Sn), that is −1, to χ+

h (x). If q = n, then the effect of the crossing on
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χ+
h (x) is to add (−1)n+1 χ (Bn), that is −1, to χ+

h (x). Thus, in both cases, the effect
of this crossing in the direction of transverse orientation is that χ+

h (x) decreases by
one unit.

We now turn to the case where p and q are nonzero. If we consider (hx )
−1 ({0}),

which is a (not necessarily connected) smooth orientable hypersurface of S
n for any

x ∈ R
n+1 − Hh (since ∇hx (u) �= 0 whenever hx (u) = 0), the effect of the crossing

in the direction of transverse orientation can then be viewed as a surgery performed
on the hypersurface. If q is even (resp. odd), the “surgery” consists in cutting out a
piece of hypersurface homeomorphic to S

q−1 × D p (resp. Dq × S
p−1
)

and replacing
it by a piece of hypersurface homeomorphic to Dq ×S

p−1 (resp. S
q−1 × D p

)
, where

Dm+1 is the closed m-ball bounded by S
m , (m ∈ N). Recall that such a surgery is

possible by the fact that S
p−1 × S

q−1 can be regarded as the boundary of S
q−1 × D p

or as the boundary of Dq × S
p−1. When we consider (hx )

−1([0,+∞[), the effect
of the “surgery” is to remove (resp. to add) a cell complex that is homeomorphic to
D p × Bq if q is even (resp. odd). Since Euler characteristic is multiplicative under
cross products, the effect of the crossing on χ+

h (x) is thus to add (−1)q+1 χ (Bq),
that is −1. ��
Proof of Corollary 5. By Theorem 4, if n + 1 is even, for every x ∈ R

n+1
�Hh ,

ih (x) = 1 + χ−
h (x) = χ+

h (x) + 1 and hence ih (x) = 1 + 1
2

(
χ−

h (x) + χ+
h (x)

)
.

Since χ−
h (x) + χh (x) + χ+

h (x) = χ (Sn) = 1 + (−1)n , it follows that ih (x) =
1 − 1

2χh (x).
Now, if n + 1 is odd then, for every x ∈ R

n+1
�Hh , ih (x) = 1 − χ−

h (x) =
χ+

h (x) − 1 and hence ih (x) = 1
2

(
χ+

h (x) − χ−
h (x)

)
. ��

Proof of Theorem 6. We shall give later a proof valid in any dimension n+1, (n ∈ N
∗),

(cf. proof of Theorem 7). But, in order to deal with the special case of cusp points, we
present here a slightly different proof in the plane.

Let K , L ⊂ R
2 be convex bodies of class Cω+ such that Hh is representing the

formal difference K − L in R
2. We shall denote by k and l their respective support

functions. Following the proof of Proposition 8 for n + 1 = 2, we get

1h (x) = 1 − χ [(K + {−x}) ∩ ∂L] ,

since x := xh (u) = xk (u) + (−xl (u)) ∈ K + (−L).
Note that ∂ (K + {−x}) and ∂L are internally tangent at the point xl (u) since

xl (u) = xkx (u), where kx (u) := k (u)−〈x, u〉, (u ∈ S
1
)
. Here ‘internally’ means that

the two convex curves lie in the same side of their common tangent. Since x := xh (u)

is assumed to be a regular point of Hh , we have Rh (u) �= 0 and thus Rkx (u) �= Rl (u).
If Rh (u) > 0, then Rkx (u) > Rl (u), so that, in a neighborhood of the tangent

point, (∂L) � {xl (u)} lie in the interior of K + {−x}. It follows that

χ [(K + {−x}) ∩ ∂L] = 1

2
(χ [∂ (K + {−x}) ∩ ∂L] − 1) = 1

2
n′

h (x) ,

where n′
h (x) = χ

({
v ∈ S

1 − {u} |hx (v) = 0
})

. Thus 1h (x) is then equal to 1 −
1
2 n′

h (x), which is the value taken by ih on the connected component of R
2
�Hh

towards which the unit normal vector −u is pointing to.
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If Rh (u) < 0, then Rkx (u) < Rl (u), so that, in a neighborhood of the tangent
point, (∂ (K + {−x})) � {xl (u)} lie in the interior of L . It follows that

χ [(K + {−x}) ∩ ∂L] = 1

2
(χ [∂ (K + {−x}) ∩ ∂L] + 1) = 1

2
n′

h (x) + 1,

where n′
h (x) = χ

({
v ∈ S

1 − {u} |hx (v) = 0
})

. Thus 1h (x) is then equal to
− 1

2 n′
h (x), which is the value taken by ih on the connected component of R

2
�Hh

towards which the unit normal vector −u is pointing to.
Following the same approach for a simple cusp point c := xh (v) and noticing that

Rh = Rkx − Rl changes sign at v, we obtain

1h (c) = 1 − 1

2
n′

h (c) ,

where n′
h (c) = χ

({
v ∈ S

1 − {v} |hx (v) = 0
})

, which is the required value for 1h (c).
��

Proof of Theorem 7. Let K , L ⊂ R
n+1 be convex bodies of class Cω+ such that Hh is

representing the formal difference K − L in R
n+1. Denote by k and l their respective

support functions. Following the proof of Proposition 8, we get

1h (x) = (−1)n+1 (1 − χ [(K + {−x}) ∩ ∂L]) ,

since x := xh (u) = xk (u) + (−xl (u)) ∈ K + (−L). Note that ∂ (K + {−x}) and
∂L are internally tangent at the point xl (u) since xl (u) = xkx (u), where kx (u) :=
k (u) − 〈x, u〉, (u ∈ S

n).
The result is the consequence of the following four observations:

(i) The proof of Proposition 8 can be adapted to obtain χ [(K + {−x}) ∩ ∂L] =
χh (x) + χ+

h (x) in the present case;
(ii) χ−

h (x) + χh (x) + χ+
h (x) = χ (Sn) = 1 + (−1)n ;

(iii) At x = xh (u), χ−
h : R

n+1 → Z, p �→ χ
[(

h p
)−1

(]−∞, 0[)
]

takes the same

value as the one it takes on the connected component of R
n+1

�Hh towards which
−u is pointing to;

(iv) On this connected component, ih (p) = 1 + (−1)n+1 χ−
h (p) by Theorem 4. ��

6 Further remarks

6.1 Euler characteristic of an analytic hedgehog

Let Hh ⊂ R
n+1 be an analytic hedgehog. Define its Euler characteristic by:

χ (Hh) :=
∫

Rn+1

1h (x) dχ (x) .
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Proposition 13 Any analytic hedgehog of R
n+1 has Euler characteristic 1.

Proof Let Hh be a Cω-hedgehog of R
n+1 and let K , L ⊂ R

n+1 be convex bodies of
class Cω+ such that Hh is representing the formal difference K − L . By the definitions
of χ (Hh) and 1h , we have:

χ (Hh) :=
∫

Rn+1

(−1)n+1
(

1K ∗ 1− o
L

)
(x) dχ (x) .

Convolution is a commutative, associative operator providing C F
(
R

n+1
)

with the
strucuture of an algebra and by reversing the order of integration, we get immediately
(Curry et al. 2012, Lemma 19.1, p. 36):

∫

Rn+1

( f ∗ g) dχ =
⎛

⎜
⎝
∫

Rn+1

f dχ

⎞

⎟
⎠

⎛

⎜
⎝

∫

Rn+1

gdχ

⎞

⎟
⎠ for all f, g ∈ C F

(
R

n+1
)

.

Thus

χ (Hh) = (−1)n+1

⎛

⎜
⎝

∫

Rn+1

1K (x) dχ (x)

⎞

⎟
⎠

⎛

⎜
⎝

∫

Rn+1

1− o
L

(x) dχ (x)

⎞

⎟
⎠ ,

that is, χ (Hh) = (−1)n+1 χ (K ) χ

(
− o

L

)
= (−1)n+1 χ (D) χ

(
o
D

)
= 1, where D

is the closed (n + 1)-ball bounded by S
n in R

n+1, (n ∈ N). ��
Remarks For any analytic hedgehog Hh ⊂ R

n+1, χ (Hh) can also be regarded as
the Euler characteristic of the complement of the unbounded connected component of
R

n+1 − Hh , which is a compact contractible tame set.

6.2 Sturm-Hurwitz type theorems

The Sturm-Hurwitz theorem states that any continuous real function of the form

f (θ) =
+∞∑

n=N

(an cos nθ + bn sin nθ) ,

for some sequences of real numbers (an) and (bn), has at least as many zeros as its
first nonvanishing harmonics: #{θ ∈ [0, 2π [| f (θ) = 0} ≥ 2N .

For C2-functions, this result is closely related to the index ih (x) of a C2-hedgehog
Hh ⊂ R

2 with respect to a point x ∈ R
2
�Hh and to its relationship with the number

of zeros of hx (u) = h(u) − 〈x, u〉, (u ∈ S
1
)

(Martinez-Maure 2010, 2011). So, our
results suggest that, in higher dimensions, Sturm-Hurwitz type theorems might resort
to the Euler characteristic.
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6.3 Mixed volume of analytic hedgehogs

As a consequence of Theorems 2 and 3, we have:
Given hedgehogs with support functions h1, . . . , hn+1 ∈ Cω (Sn; R), the real func-

tion P : R
n+1 −→ R given by

P (α1, . . . , αn+1) := vn+1

(
n+1∑

k=1

αkhk

)

=
∫

Rn+1

(
1α1h1 ∗ · · · ∗ 1αn+1hn+1

)
(x) dλ (x) ,

where λ denotes the Lebesgue measure on R
n+1, is a homogeneous polynomial the

coefficients of which are the mixed volumes of Hh1 , . . . ,Hhn+1 up to a constant
factor.

6.4 On the mixed area of K , L ⊂ R
2 when L is centered

Proposition 14 Let K and L be convex bodies of class C2+ in R
2. Denote by k and l

their respective support functions and let kx be the support function of K with respect
to x: kx (u) := k (u) − 〈x, u〉 ,

(
u ∈ S

1
)
. Denote by −L the reflection of L through

the origin and l̂ its support function: l̂ (u) = l (−u),
(
u ∈ S

1
)
. We have:

v2 (k, c (l)) = 1

8

∫

K+(−L)

nk−l (x) dλ (x) ,

where c (l) is the centered part of l, that is, c (l) = 1
2

(
l + l̂

)
and nk−l (x) =

# (kx − l)−1 ({0}) = #
{
u ∈ S

1 |kx (u) = l (u)
}
. In particular, if L is centered (i.e.,

centrally symmetric with respect to the origin), then

v2 (K , L) = 1

8

∫

K+L

nk−l (x) dλ (x) .

Proof As we have recalled, for any C2-hedgehog Hh , we have Martinez-Maure
(2000):

∀x ∈ R
2
�Hh, ih (x) = 1 − 1

2
nh (x) ,

where nh (x) denotes the number of cooriented support lines of Hh through x , that is,
the number of zeros of hx : S

1 → R, u �→ h(u) − 〈x, u〉. Therefore, we have:

∀x ∈ (K + (−L)) �Hh,
(
ik+̂l − ik−l

)
(x) = 1

2
nk−l (x) .
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By integrating over K + (−L), we get:

v2
(
k + l̂

)− v2 (k − l) = 1

2

∫

K+(−L)

nk−l (x) dλ (x) .

Since v2
(
k + l̂

)− v2 (k − l) = 2v2
(
k, l + l̂

)− (v2 (l) − v2
(
l̂
))

and v2
(
l̂
) = v2 (l),

it follows that:

v2 (k, c (l)) = 1

8

∫

K+(−L)

nk−l (x) dλ (x) .

��
Remark. This result gives a geometrical interpretation of the mixed area when one
of the arguments is a centered convex body since nk−l (x) is the number of common
support lines of K + {−x} and L .

6.5 In higher even dimensions

Starting from Corollary 5, we can easily obtain the following result in much the same
way.

Proposition 15 Let K and L be convex bodies of class Cω+ in R
n+1, where n + 1 is

even. Denote by k and l their respective support functions and let kx be the support
function of K with respect to x : kx (u) := k (u)−〈x, u〉 , (u ∈ S

n). Denote by −L the
reflection of L through the origin and l̂ its support function: l̂ (u) = l (−u), (u ∈ S

n).
We have:

vn+1
(
k + l̂

)− vn+1 (k − l) = 1

2

∫

K+(−L)

χk−l (x) dλ (x)

where χk−l (x) = χ
[
(kx − l)−1 ({0})] = χ

[{u ∈ S
n |kx (u) = l (u) }].
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