The Minkowski Problem for hedgehogs: uniqueness results

Y. Martinez-Maure

Institut Mathématique de Jussieu, Paris

20-24 August 2012

IMJ-Paris (Institute)

The Minkowski Problem for hedgehogs

20-24 August 2012 1 / 15

The CMP admits a natural extension to hedgehogs

• The classical Minkowski problem (CMP):

Existence, uniqueness and regularity of a closed convex hypersurface of \mathbb{R}^{n+1} whose Gauss curvature is prescribed as a positive function on \mathbb{S}^n .

• Central role in:

- the theory of convex bodies.
- the theory of elliptic Monge-Ampère equations.

• The CMP admits a natural extension to hedgehogs.

Hedgehogs = Minkowski differences of convex bodies (or hypersurfaces)

• A way for exploring Monge-Ampère equations of mixed type.

IMJ-Paris (Institute)

The Minkowski Problem for hedgehogs

Hedgehogs as differences of convex bodies

 Let (Kⁿ⁺¹, +, .) be the set of convex bodies of Rⁿ⁺¹ equipped with Minkowski addition and multiplication by nonnegative real numbers:

$$\mathcal{K}+\mathcal{L}=\{x+y\,|x\in\mathcal{K},y\in\mathcal{L}\,\};$$

 $\lambda.\mathcal{K} = \{\lambda x \mid x \in \mathcal{K}\}.$

- $(\mathcal{K}^{n+1},+,.)$ is not a linear space: no subtraction in \mathcal{K}^{n+1} .
- Formal differences of convex bodies of ℝⁿ⁺¹ do constitute a linear space (Hⁿ⁺¹, +, .).
- Any formal difference $\mathcal{K} \mathcal{L}$ of two convex bodies \mathcal{K} , $\mathcal{L} \in \mathcal{K}^{n+1}$ has a nice geometrical representation in \mathbb{R}^{n+1} , (Y.M.², Canad. J. Math 2006).

Case of convex bodies with positive Gauss curvature

• Subtracting two convex hypersurfaces (with positive Gauss curvature) by subtracting the points corresponding to a same outer unit normal to obtain a (possibly singular and self-intersecting) hypersurface:

Figure: Hedgehogs as differences of convex bodies of class C_{+}^{2}

• To study convex bodies or hypersurfaces by decomposition into a sum of hedgehogs.

EX: STUDY OF A CONJECTURED CHARACTERIZATION OF THE SPHERE (Y.M. 2 , C. R. Acad. Sci. Paris 2001).

 $\mathsf{Idea:} \ S = S\left(0_{\mathbb{R}^3}; r\right) + \left(S - S\left(0_{\mathbb{R}^3}; r\right)\right) \text{ and study of } \left(S - S\left(0_{\mathbb{R}^3}; r\right)\right).$

• To geometrize analytical problems by considering functions as support functions.

EX: GEOMETRICAL PROOF OF THE STURM-HURWITZ THEOREM (Y.M. $^2\!\!\!\!$, Arch. Math. 2003).

Support functions

Every $K \in \mathcal{K}^{n+1}$ is determined by its support function

A closed convex hypersurface of class C_+^2 is determined by its support function $h \in C^2(\mathbb{S}^n; \mathbb{R})$ as the envelope $\mathcal{H}_h \subset \mathbb{R}^{n+1}$ of the hyperplanes $\langle x, u \rangle = h(u)$.

Parametrization

The natural parametrization of the envelope \mathcal{H}_h of the hyperplanes with equation $\langle x, u \rangle = h(u)$ assigns to each $u \in \mathbb{S}^n$, the unique solution of the system

$$\left\{ \begin{array}{l} \langle x, u
angle = h(u) \ \langle x, .
angle = dh_u(.) \end{array}
ight.$$

that is $x_h(u) = h(u)u + (\nabla h)(u)$. In fact, $\mathcal{H}_h = x_h(\mathbb{S}^n)$ is defined for any $h \in C^2(\mathbb{S}^n; \mathbb{R})$. It is called hedgehog with support function h.

At each regular point $x_h(u) \in \mathcal{H}_h$ u is normal to \mathcal{H}_h .

Gauss curvature

• The singularities of $\mathcal{H}_h \subset \mathbb{R}^{n+1}$ are the very points where the Gauss curvature $\kappa_h(u) = 1/\det[\mathcal{T}_p x_h]$ is infinite.

• The curvature function $R_h := 1/\kappa_h$ is well-defined and continuous on \mathbb{S}^n , so that the Minkowski Problem arises for hedgehogs.

• A calculation gives: $R_h(u) = \det [H_{ij}(u) + h(u)\delta_{ij}]$, where $(H_{ij}(u))$ is the Hessian of h at u with respect to an orthonormal frame on \mathbb{S}^n .

Case
$$n=2$$

• The curvature function of $\mathcal{H}_h \subset \mathbb{R}^3$ is given by

$$1/\kappa_h = h^2 + h\Delta_2 h + \Delta_{22} h$$

(Δ_2 is the Laplacian and Δ_{22} the Monge-Ampère operator, i.e. the sum and the product of the eigenvalues of *Hess h*).

• The type of the equation $h^2 + h\Delta_2 h + \Delta_{22} h = 1/\kappa$ is given by $sgn[1/\kappa]$. So, the PB leads to **PDE's of mixed type for non-convex hedgehogs**.

Key results on the CMP

- Major contributions by Minkowski, Alexandrov, Nirenberg, Pogorelov, Cheng-Yau and others.
- Existence of a weak solution:

Theorem (Minkowski - 1903)

If $\kappa \in C(\mathbb{S}^n; \mathbb{R})$ is positive and such that

$$\int_{\mathbb{S}^n} \frac{u}{\kappa(u)} \, d\sigma(u) = 0$$

then κ is the Gauss curvature of a unique (up to translation) closed convex hypersurface \mathcal{H}_h of \mathbb{R}^{n+1} .

• Strong result:

Existence problem

EXISTENCE OF A C²-SOLUTION:

What are necessary and sufficient conditions for $R \in C(\mathbb{S}^n; \mathbb{R})$ to be the curvature function of some hedgehog $\mathcal{H} = \mathcal{K} - \mathcal{L}$?

- Integral condition (1) $\int_{S^n} uR(u) d\sigma(u) = 0$ is still necessary (but of course not sufficient: consider -1).
- Equations with no solution $(Y.M.^2, Adv. in Math. 2001)$:

For every $v \in S^2$, $R(u) = 1 - 2 \langle u, v \rangle^2$ satisfies (1) and changes sign cleanly on S^2 but is not a curvature function:

there is no $h \in C^2(\mathbb{S}^2;\mathbb{R})$ such that $R_h = R$.

• Can the curvature function of a hedgehog \mathcal{H}_h be nonpositive on \mathbb{S}^2 ? This problem is equivalent to the following conjecture:

Hedgehog with everywhere nonpositive function

Conjecture (C): If $S \subset \mathbb{R}^3$ is a closed convex surface of class C_+^2 such that

$$(k_1-c)(k_2-c)\leq 0$$
,

with c = cst, then S must be a sphere of radius 1/c.

(C) is equivalent to (H):

(H) If $H_h \subset \mathbb{R}^3$ is a hedgehog such that $R_h \leq 0$, then H_h is a point. Counter-example to (H) (Y.M.², C. R. Acad. Sci. Paris 2001).

The Minkowski Problem for hedgehogs

Uniqueness problem

Uniqueness of a C^2 -solution:

Let $R \in C(\mathbb{S}^n;\mathbb{R})$ be the curvature function of some hedgehog \mathcal{H}_h . What are necessary and sufficient conditions on R for \mathcal{H}_h to be uniquely determined by R (up to parallel translations and identifying h with -h)?

In the convex case, the uniqueness comes from the equality condition in a well-known Minkowski's inequality. This inequality cannot be extended to hedgehogs and uniqueness is lost.

Figure: Noncongruent smooth (but not analytic) hedgehogs with the same curvature function

QUESTION. Does there exist any pair of noncongruent analytic hedgehogs with the same curvature function?

IMJ-Paris (Institute)

The Minkowski Problem for hedgehogs

20-24 August 2012 12 / 15

Let H_3 be the linear space of C^2 -hedgehogs defined up to a translation in \mathbb{R}^3 .

Theorem (Y.M.², Central European J. Math. 2012). Let \mathcal{H} and \mathcal{H}' be C^2 -hedgehogs that are linearly independent in H_3 . If some linear combination of \mathcal{H} and \mathcal{H}' is of class C^2_+ , then \mathcal{H} and \mathcal{H}' have distinct curvature functions.

Our second result relies on the extension to hedgehogs of the notion of mixed curvature function.

Theorem (Y.M.², Central European J. Math. 2012). Let \mathcal{H} and \mathcal{H}' be analytic (resp. projective C^2) hedgehogs of \mathbb{R}^3 that are linearly independent in H₃. If the mixed curvature function of \mathcal{H} and \mathcal{H}' does not change sign, then \mathcal{H} and \mathcal{H}' have distinct curvature functions.

The following result relies on the decomposition of hedgehogs into centered and projective parts.

Theorem (Y.M.², Central European J. Math. 2012). Let \mathcal{H} and \mathcal{H}' be C^2 -hedgehogs that are linearly independent in H₃ and the centered parts of which are non-trivial and proportional to one and the same convex surface of class C_+^2 . Then \mathcal{H} and \mathcal{H}' have distinct curvature functions.

Corollary. Two C^2 -hedgehogs of nonzero constant width that are linearly independent in H_3 must have distinct curvature function.

Consequence. The Monge-Ampère equation $h^2 + h\Delta_2 h + \Delta_{22}h = R$, $R \in C(\mathbb{S}^2; \mathbb{R})$, cannot admit more than one solution of the form f + r, where $f \in C^2(\mathbb{S}^2; \mathbb{R})$ is antisymmetric and r is a nonzero constant.

(Solutions are identified if they are opposite or if they differ by the restriction to \mathbb{S}^2 of a linear form on \mathbb{R}^3)

イロト 不得下 イヨト イヨト 三日

Thank you very much

Figure: European hedgehog

IMJ-Paris (Institute)

The Minkowski Problem for hedgehogs

20-24 August 2012 15 / 15